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SECTION 1

INTRODUCTION

Since March 1977, the Aeroelastic and Structures Research Laboratory of

the Massachusetts Institute of Technology has conducted research studies under

the sponsorship of the Air Force Office of Scientific Research on finite

element methods for linear fracture analysis of three-dimensional solids and

for fracture of metals under high temperature creep conditions. The general

thread of this research program is the application of the assumed stress hybrid

finite element model. For the 3—D fracture analyses a series of special elements

for hexagonal shape have been derived that can represent the asymptotic singular

behavior at the crack front of 3-D solids . For the fracture analyses of metals
under high temperature creep conditions the research effort has been concen- - -

trated on the development of methods of creep analyses of plane problems with

initial cracks and for gradual crack extension. From a comprehensive litera-

ture survey made for both analytical and experimental studies of crack extension
under creep conditions it is concluded that a possible numerical method for

crack extension study under creep conditions is to incorporate the concept of

damage parameter by Kachanov. Preliminary development in incorporating such

parameter in the finite element creep analysis has been made.

Portions of results obtained under this research program, in particular , those
in 3-D fracture analysis have already been documented either as interim reports
submitted to the Air Force Office of Scientific Research or in the form of

technical papers published in proceedings of technical conferences. A list

of such publications is given in Section 2 of this report .

In the appendix a separate document on the study of finite element analyses

for crack growth in metals under creep conditions is presented . Sussnaries of

research findings of this research program are given in Section 3.
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1. Moriya, K., “Hybrid Crack Elements for Three-Dimensional Solids and
Plate Bending” , ASRL TR 191-1 , Submitted to APOSR in September 1977.

2. Lee , S.W. and Pian , T.H.H.,  “Improvement of Plate and Shell Finite
Elements by Mixed Formulations”, AIAA 7., Vol. 16, No. 1, January 1978,
pp. 29-34, Paper presented at AIAA/ASME 18th Structures , Structural
Dynamics and Materials Conference, San Diego, California, March 21-23,
1977.

3. Pian, T.H.H. and Lee, S.W., “Creep and Viscoplastic Analysis by Assumed
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et al., TAPIR Press, Norwegian Institute of Technology, Trondheim, Vol. 2,
1977, pp. 807—822.

4. Rhee, H.C., Atluri, S.N., Moriya, K. and Pian, T.H.H., “Hybrid Finite
Element Procedures for Analyzing Through Flaws in Plates in Bending”,
Transactions of 4th International Conference on Structural Mechanics
in Reactors Technology , Paper No. M2/4 , San Francisco, California,
Aug. 15—19, 1977.

5. Pian , T.H.H. and Moriya, K., “Three Dimensional Crack Element by Assumed

Stress Hybrid Model” , Proceedings of the 14th Annual Meeting of the

Society of Engineering Science, Bethlehem, Pennsylvania, Nov. 14—16,
1977, pp. 913—917.

6. Pian , T.H.R. and Moriya, K., “Three Dimensional Fracture Analysis by
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Proceedings of the First International Conference held at the University

College Swansea, Jan . 9—13, 1978, pp. 363—373.

7. Lee, S.W., “Finite Element Methods for Reduction of Constraints and
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SECTION 3

SUMMARY OF RESEARCH FINDINGS

This research program consists of two separate studies in the area of
finite element analyses in fracture mechanics.

3.1 Evaluation of Special 3-D Crack Elements Based on an Assumed Stress
Hybrid Model

Special crack front elements have been developed and have been assembled
into superelements for direct evaluation of stress intensity factors K1, K

11
,

and K
111 of arbitrarily shaped three-dimensional cracks. The formulation is

based on the assumed stress hybrid finite element model. The assumption of
stresses and boundary displacements contains asymptotically exact terms . The
stress-free condition over the crack surface and the displacement compatibility
across interelement boundaries are completely satisfied. The superelements
are compatible with most existing finite element computer programs .

Numerical results for coumsonly used fracture test specimens (singe edge
crack specimen , center crack specimen , double edge crack specimen and compact
tension specimen) , an embedded penny-shaped crack, a semi-circular surface
flaw, and e quarter—circular corner flaw were obtained.

A superelement has also been developed directly for the analysis of
bending and shearing stress intensity factors , KB and K~, of thin plates
with a through-the-thickness crack subjected to out-of-plane bending. The
particular approach is also based on the hybrid element concept , for which
the assumed stresses satisfy both equilibrium and compatibility conditions .
Poisson-Kirchoff ’ a thin plate theory and the complex variable technique are
used. Numerical example includes the problem of pure cylindrical bending of
a thin plate with finite width and centrally located through-the-thickness
crack . Extensions of the formulation have been made to bending analyses of
an anisotropic plate with through-the-thickness crack , an isotropic plate
with wedge shaped notch, and a bi-material plate with through-the-thickness
crack located parallel or normal to the interface .

A technical report for this work has been submitted to OSR for approval .

3
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3 • 2 Development of Methods for Predicting Crack Growth Rate under
- Creep Conditions

From an intensive literature survey on investigations of static creep
crack growth problems it is concluded that experimental studies lead to
contradictory results when corre lated with crack growth rate da/dt . The
relations obtained from the experiments are all empirical ones which are
not correlated with the creep behavior and creep rupture data of the material.
Furthermore, none of these empirical relations provides a criterion to predict

the crack growth incubation time which, for many test conditions , may occupy
a large portion of the total life. Many theoretical studies have been made
to explain qualitatively the nature of crack growth under creep condition.

Most of these works are based on a model similar to the Dugdale model in

elastic—plastic fracture analysis in that the creep region is limited to

a very small region at the crack tip while the rest of the solid remains

elastic. The most direct theory for creep rupture is the concept of damage

parameter that was suggested by Kachanov (13 . The material constants

associated with the damage parameter can be determined from creep rupture

tests of uniaxial specimens under different stresses. The concept of

damage parameter has been included in the formulation of an assumed stress

finite element method for creep analysis using either explici t or implicit

integration scheme.

An incremental finite element method for analyzing gradual crack propaga-
tion has been developed. The method has been investigated by solving a
center-cracked panel under elastic condition and under creep condition with
g1v~n crack extension rate using assumed stress hybrid element.

A particular experiment by Haigh on crack propagation under creep condi-
tion has been chosen as the example problem to exercise various options in
finite element analysis. The experiment consisted of a wedge opening load

(WOL) specimen of Cr—Mo-V steel under constant load and the results include
time histories of the displacement at the loading point and of the crark
extension . By an explicit finite element scheme the time histories of stress
and displacement distribution and of the dam~~e parameter have been estjm&ted .



The resulting incubation period is only about one-sixth of that indicated

by the experiments. It should be pointed out that the material behavior

modeled for this analysis is not an accurate one since it was obtained by
very limited experimental data. To correlate results by computational and
experimental studies it is necessary to obtain adequate data from creep
rupture tests .

Detailed description of this research task is given in the appendix of
this report.

4
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APPENDIX A

FINITE ELEMENT ANALYSIS FOR CRACK GROWTH

IN METALS UNE~ R CREEP CONDITIONS

A.l Introduction

Among the most urgent research topics in structures and materials tech-
nology for air breathing engines of high speed aircrafts is the life pre-

diction of structural parts with notches at elevated temperature under
fatigue and creep conditions. The problem of high temperature fatigue of
metals has been studied by many institutions in the United States and abroad

(l*,21. Such studies are generally restricted to experimental investigations of

the number of cycles to failure. A more basic research of the creep fracture
problem is the study of the rate of crack extension under creep conditions. For

s~’ch a problem both analytical and experimental studies have been made and different

fracture mechanics parameters have been used to correlate the test results. But

no agreement can be made among the various investigators. The objective of the
present research is to use the finite element method to obtain the time history
of stress and strain distributions around the tip of a slowly propagating crack
and to see whether there is a validity of correlating the crack growth behavior
with any of the suggested fracture mechanics parameters. During the course
of study, a comprehensive literature survey was made for both analytical and
experimental studies of slow crack growth under creep conditions. Among the
suggested methods for creep crack growth is one based on the creep damage concept

proposed by Kachanov. Subsection A 2  of this appendix is a review of literature

on the creep crack growth problem.

Subsection A.3 is an outline of the assumed stress hybrid method for creep

analyses taking the damage parameter into account. During the earlier period
of this research program the finite element creep analyses was formulated by
an explicit integration scheme. However, it was found that when the damage
parameter is included in the analysis, an explicit integration scheme will
require the use of very small time increments in order to maintain numerical

*The references in this appendix are listed at the end of the apt sndix.
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stability. Also, one of the main advantages of an explici t integration scheme
in ordinary finite element creep analysis is its maintaining of the same global

stiffness matrix for different time increments. For a crack growth study such 
-

advantage no longer exists because the global stiffness matrix will have to

be modified at each time step. In th~ present formulation , thus, both explicit
and implicit schemes are included.

Subsection A.4 is a description of the method used to simulate slow crack

growth by finite element methods and Subsection A.5 presents some preliminary

numerical results of the present creep crack growth study. Finally, in

Subsection A.6 some extensions of the present study are proposed.

A.2 Review of Literature on Creep Crack Growth

A.2. 1 Experimental Investigations

A review and analysis of earlier experimental works of static crack
growth at high temperatures were made by Haigh in 1975 [33 . In a more
recent review on high temperature crack growth given by Sadananda and

Shahinian ~~~j ,  the static creep crack growth is also discussed. It can
be seen in Table A. 1 that experimental investigations have been made in the

United Kingdom, United States and Japan. These studies have covered different

materials including aluminum alloys, low alloy steel , stainless steel , and
superalloys and different specimen geometries.

Experimental studies have shown that the process of creep crack growth

usually consists of an incubation period and a growth period (21]. Depending

on the material and the configurations of test specimens an . the loading
magnitudes, the incubation period during which creep damage develops ahead

of the crack may represent a substantial part of the life of the specimen.

Nevertheless most of- the research studies have concentrated only on the

growth phase with the aim of establishing a correlation between the rate of

crack growth da/dt and certain parameters . The most comeonly used parameters
for such correlations are: (1) the stress intensity factor, (2) the net
sections stress , (3) the crack opening displacement or the relative displace—
ment between two points at the two sides of the crack tip, and (4) the J

integral or C~ parameter.

8
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As shown in Table A. 1, the parameter which was used most for correlating
creep crack growth data is the stress intensity factor K. The relation between
the crack growth rate da/dt and the stress intensity factor K ha. been pre-
sente d as straigh t lines on a log-log plot , i.e.

~~~=A K hh1

Haigh 131 and Koterazawa and Mon (24], however, have pointed out that A and
m may be considered as constants only for specimens of a given geometric
shape, while for different geometries the results appear as a fami ly of
approximately parallel lines. Many experimental data show that the net
cross section stress is a better parameter for correlating the crack growth
rate (10,15,25]. Again, it is also clear that such correlation is only

applicable to a very limited range or materials and configurations. In
analyzing large amounts of data, Haigh and Pilkington, at al. (21,18]
correlated the crack growth rate with the rate of increasing relative dis-
placement across the crack in the form of

d&
(A. 2)

where C is a constant, ó is the crack tip displacement, and n is a constant
slightly smaller than unity. This might well be a very pertinent factor
for the crack growth rate. However, it is not a value that can be determined
ahead of time in order to be used to estimate the crack growth rate .

The C~ integral or J integral (30] is obtained directly from the Eshelby-
cherepanov-Rice J integral by introducing strain rate instead of strain such
that

4 

C*m5
’
[W (Ei j )cJ~ — T~j~~cJSJ

where

w(~~
) = (A.4)

9
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T~ = traction vector

- displacement rate

= elastic strain rate

= creep strain rate

r = integration path dxawn counter—clockwise from a point on a

crack surface to the opposite point on the other crack surface.

*The C integral is path independent. But for the evaluation of the integral

in Eq. (A.4 ) one must neglect the elastic part in the strain rate. Other-
wise, the integral has no meaning . But the rigid-creep assumption eliminates
the time element in the problem. Before the initiation of the crack growth,
* *C will remain constant. Therefore , it is impossible to relate C to the

experimentally observed crack growth incubation time. Moreover during the
growth stage, the contribution from the elastic part is substantial and cannot
be ignored.

Thus , except for the existence of a mathematical analogy with the J
integral , it appears that the C~ integral cannot be used as a fracture
criterion . Landes and Begley (30] and Nikbin et al. (12,13] had to apply a very
complicated procedure to obtain the values of C~ from experimental data .
Koterazawa and Mon (24] estimated the values of ~ by an approximate relation
that J is proportional to the product of net section stress and the rate
of elongation of a gage length .5. These researchers and Harper and Eflison
(31] all indicate that the correlation of the crack growth rate with C* is

much better than the correlation with K and 0 et • But , they all conclude
that the correlation becomes poor in the early state of crack growth or at
a lower value of C~ .

A • 2.2 Theoretical Prediction of Crack Growth Behavior

Most of the existing theories for creep crack growth are based on
• idealized models similar to the Dugdale model that has been used to determine

the size of the plastic zone at the tip of a crack. In the corresponding
model here, the creep behavior is assumed to be confined only to an array
of edge dislocation along the plane of the crack , while the remaining region

10 
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is considered elastic. The strain rate C along the line ahead of the crack

is determined from the creep law with elastic strain neglected . Both Vitek
(32] and Riedel [33] have obtained nonlinear integro—differential equations
for the problem, and the time history of the crack opening displacement can

be evaluated. In determining the crack incubation time and crack growth rate ,

Vitek has to assign a value for the critical crack opening displacement (COD)

and a value for the effective length of the creep region. Both values are
to be determined from ad hoc crack growth experiments. In Riedel’s result
both the crack growth incubation period and the crack growth rate da/dt can
be expressed as functions of stress intensity factor K1. But he claims that
further experimental evidence is needed to prove the validity of his model.
The Dugdale model has also been used in connection with Kachanov ’s damage
parameter concept which will be described in detail in the next subsection.

Another type of creep crack growth theory is based on a void growth
model . This model attempts to find a relation between the crack growth rate
and the growth and coalescence of voids in front of the pre—existing crack .
For example , Mj and Ashby (34 ,35] examine the mechanisms of void nucleation
and growth which lead to fracture on a microscopic level. Dimelfi and Nix
(36] analyze a growth of a series of cavities growing by power law creep in
the elastic crack tip stress field. Due to the basic assumption, the result-
ing approximate solution gives a functional relation between the crack growth
rate and the elastic stress intensity factor. The application of this model

requires an estimation of the spacing and size of the initial cavities which
are , of course, functions of applied stress level. Most recently, Sadananda
(373 proposed a micromechanism for crack growth based on an analysis of the
grain boundary diffusion.

A.2.3 Kachanov’s Damage Parameter Concept and Applications to Creep

Crack Growth

The damage parameter concept was proposed by Kachanov (38] to represent
macroscopically the acceleration in material deterioration during the tertiary
phase of a creep test under constant stress conditions. For example, when
the creep strain rate C~ of a metal in the primary and secondary phase under
uniaxial tension stress 0 is expressed in the form ,

11 
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~~ ~~~~ t) (A.5)

it can be modified to include tertiary creep phase by

•t
f ( ~~~~~~~~4) (A. 6)

• where cu is the damage parameter which ranges from zero to unity. The rate of

change of the damage parameter can also be expressed as a function of 0/ (1-cu) ,

in the form of

(A. 7)

In the case of steady state or secondary creep that can be represented by a

power law relation , the modified creep strain law is then

E = E0[ d.( I—c )) (A. 8)

where and 0
0 

are the reference creep strain and uniaxial stress respec-

tively , and the rate of change of the damage parameter is

B [Ø.,~~_~Ø)]

Thus , full damage occurs when w becomes unity, i.e. when the creep strain rate

becomes infinite. It is also clear that for most metals for which a and n are

much larger than unity, the acceleration of material damage will be confined

only to a short period prior to rupture of the material. Extension of the

damage parameter concept to creep rupture under aultiaxial loading conditions

has been investigated by many experimentalists . A paper by Leckie and

Hayhuret (39] si~~~*rizes the experimental evidence, and analytical expressions

are proposed for the rate of creep strain components and for the rate of

change of t ie damage parameter cu. Basically , experiments have shown that

under multi-axial loading conditions, creep strain components for various

metals follow the general rules for plastic strain oo~~ onents in plasticity.

However, in estimating the rupture time or the degree of damage, the reference

stress will be dependent on the mechanism of creep deterioration of the individual

- - - 
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materials. Thus , for example, in materials such as steel and aluminum alloys ,
for which the damage is related to grain boundary slide , it is expected that the
multi-axial rupture behavior would be shear dependent. On the other hand , in a
material such as copper for which the creep damage is a result of vacancy
diffusion, it is expected that the multi-axial rupture behavior is governed
by the maximum principal stress components . Torsion-tension experimental
results of copper and aluminum alloys (401 , in fact , have confirmed these
conjectures . The strain rates in the tertiary phase thus must be represented,
in general , by two reference stresses : 0 which is the octahedral shear stress
and ~ which may be either the shear stress or the maximum principal stress .
When the creep behavior of a material follows a power law, the constitutive
equations may be written in the form

-
~~~~~ ~~ (!~2)(fl ~~ (A.lO)

and

= (A. ll)

For steel and aluminum alloys , & and E are, of course, identical.
The damage parameter concept can also be extended to primary creep under

a time hardening law. In that case , the uniaxial creep strain curve is expressed
as

E~ = F(6 ,c ) )3(*) (A.l2)

When reduced time r a g(t)  is introduced , the creep strain rate may be
represented by

~~~~~~~~ 

= FC ~~ cAp ) (A.l3) 

I
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This is of the same form as the creep strain rate under steady state creep .

Similarly , the damage parameter rate with respect to the reduced time has

the same form as Eq. (A.9) if ~ is replaced by dw/dt .

Applications of Kachanov’ a concept to creep crack growth problems are

again limited to the ideal case of the Dugdale model. Kachanov (41] , in fact ,
• proposed to assign the yield stress as the stress at the crack edge and estimate

the plastic zone size based on the Dugdale model. For the uniaxial creep

relation which includes the damage parameter , it is a simple matter to calcu-

late the time required to rupture this plastic zone; hence , the rate of crack

growth can be calculated. This simplified theory neglects the stress relief

due to creep deformation and the degree of damage, in the region ahead of the

plastic zone. This will make an overly conservative estimation of the incuba-

tion period but an under-estimation of the succeeding crack growth rate .

To (42] has applied the same approach but considers the gradual increase in

damage ahead of the crack -tip plastic zone . He has obtained an analytical

solution for da/dt vs • K. It is approximately a straight line on a log-log

plot. In To’s analysis the stress redistribution due to creep was again

ignored and under the assumption of perfectly plastic material, the stress

in the plastic zone is maintained as the limiting yield stress . In actuality

the stress should be reduced to a value lower than this value and the incuba-

tion time should be increased. Further improvement in the analysis is to

include the strain hardening behavior under high temperature conditions.

Unfortunately, such information is in general not provided in the literature .

For example, in the data provided by Haigh (21], the only information on

plastic behavior is the yield stress defined by the 0.2% permanent strain.

A.3 Creep Analysis by an Assumed Stress Hybrid Method Taking Damage

Parameter into Account

The finite element analysis program [43] developed earlier in this 
-

research proj ect is related to material behaviors that are classified as

primary and/or secondary creep . The f inite element model used is the assumed

str ess hybrid model . The present section is an extension of the earlier

formulation to include the Kachanov damage parameter.

1 
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The existing creep analysis program is based on an explicit time integra-
tion scheme with the time increment limited by numerical stability. For example ,
the time increment in the analysis must be reduced when the element stress and/or
the creep rate increases. But in the crack problem the stresses near the crack

tip are very high. This means the time increments must be very small. This
drawback is further amplified when the damage parameter is included, since the

creep strain rate will accelerate rapidly when the damage parameter cu is
approaching unity.

The alternative implicit time integration scheme have been suggested for

creep analysis in connection with the conventional assumed displacement method
(44—46] . The basic idea is to express the creep strain increments in terms
of not only the state of stress but also the stress increments . The formula-
tion in this section , thus , also covers the implicit time integration scheme.

An assumed stress hybrid finite element can be derived by the modified

complementary energy principle or by the Hellinger-Reissner principle when
the assumed stresses are in equilibrium within each element [47] . For plane
stress , plane strains and three-dimensional solids it is easy to construct
compatib le shape functions for element displacements, hence , the Hellinger—

• Reissner principle is also a suitable approach. For creep analyses , the
Hellinger—Reissner principle can be extended by including the creep strains
as initial strains, and by expressing the variational functional in terms

of stress and displacement rate. For the present finite element formulation

the incremental approach is adopted , hence , it is most convenient to express

the functional in terms of stress and displac . ient increments and the
variational principle is stated as follows:

-ir~=~.[f ~~
_
~~~~~ _ 4c + ~~(pj~) 

~~~~~~~~~~~~~~~~~

(A. l4)
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15

_________ — - -— —~~~~~~— -5-— — —  ~~~~~~— -  -
~~ ~~~~~~~



- - -—— —---— ——------- —- - - - - 5 --

where

• a stress incre ment vector

• Au = displacement increment vector

s a elastic coefficient matrix

• DAU = strain increment vector in terms of displacement

increments 
-

•

CAc — creep strain increment

a applied body force increment

AT a increment of applied boundary traction

V = volume of the nth element

S0 — sur face of the nth element over which tractiona

are prescribed

The creep strain rate may be expressed in terms of the state of stress 0

for the steady state creep condition or in terms of either stresses and time -

or stresses and creep strains for the transient creep condition. When the

damage parameter cu is include d the creep rate is also a function of cu. Thus ,

the creep strain rate may be written, in general , as

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ (A. 15)

The functional 1r
~~ 

for the corresponding modified complementary energy

principle is

- ~lT 
~~ 

] (A.l6)

where 3V~ - the enti re boundary of the nth element

— boundary displacement increments
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In these variational principles the variables are Aa (and the correspond-
ing Cu T) , Lu or Lii while A€ ° is assumed to be prescribed. In the finite

element formulation the element stress and displacement increments are assumed

in terms of unknown stress parameters A~ and nodal displacement increments Aq

• respectively . For example when 1TR is used , one expresses

• Z4~ê. (A.l7) 4
AM = (A.lS)

and from which the increments in boundary tractions and strains are

AT (A.l9)

and ~)~~~ij ~4 (A.20)

Here the assumed stress increments are made to satisfy the equilibrium
condition . Substituting Eqs . (A.17) -(A.20J into Eq. (A.l4) , one obtains

~~~~~ 
~~~~~ _ 4

~~jdA~~~~ 
(A.2 1)

_
~~~

Ti~9ii}

where (A.22)

= ~~ ‘s
/ (A. 23)

(h.24)
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4Q, =~~ AT~~~dv t c~~T 9~~
3 (A.25)

For each individ~~l element one can set to zero the variation of with
respect to A~ and obtain a set of equations relating LB to Ag, i.e.

= C~ A~ . — (A.26)

In constructing the time integration scheme the increments of and w
at time tm are given by

~~~~~~~C 1 ( t— e )& ÷ GE~~~J~A~ (A .27)

~~~ =[Ci- e) C&)~,~ + e ü~~~ J~At (A.28)

where for the explicit scheme using the Euler method 8—0 , and for an
implici t scheme 1/2<8<1.

If the creep rate and the damage rate can be expressed as

= ± CL ~~~~, -t) (A. 29)

and (A.30)

one can write

= i- Fm, AG~m

and

- 

= c~om, + ~~~~~~ + M:~ (A1, 
(A.32)

18
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where

F’
-~~~~“ ?Q,Im, (A.33)

M ~~~~~~~~~~~
-
~~~~~ 

‘
~~

Then, from Eqs . (A.l7) , (A .27) , (A.28) , (A.3l) and (A .32) one can write
• and Aw asm

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fF~~~a)~~) (A.34 )

+ *(t ’4m,~~~ 8 + M~~á(i~m,) (A . 35)

• It is seen that Lw can be solved from Eq. (A.35), i.e.

I - 9
1
-b P4’ (~~~~

t + a ~~~ ~~~~~~~~
. ) (A. 36)

and by substituting into Eq. (A. 34) ,

~ 
+ ~~ )~ t ÷ _s — eot ~~ I~~~4~I~ M~, (A.37 )

In the explicit scheme by Euler ’s method, 8—0 and

C. ~~~
• = ~~~~~ 

ôt (A.38)

By substituting Eq. (A .37) into Eq. (A.24) and then into Eq. (A.26)
one obtains

1. H8 ) 4~~~~ = ~ 4~. — (A.39)

19
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where

= a i~~ 
1- 

~~~ 
) £ c~v (A. 40)

+ - 
(A.4 1)

Taking 6W
R=0 with respect to Lq in Eq. (A.2l) ,

~~c~~
’&~ 

— 4~
)
~~ 

(A .42)

Solving for A~ from Eq. (A.39) and substituting into Eq. (A.42) then yields

k 4 = ~:(4~~ i-~~~~~ ) (A.43)

where fri, 4
T~ H i-~~.)4 (A.44)

+ ~..5’ ~r (A.45)

It is seen that H0, therefore (H+H0
)~~~, is not a syninetric matrix. If the

term involving (At) 2 is neglected H8 will be syimsetric.
The element matrices AQ are assembled as global matrices K ,

LQ, and LQ
C such that

K 42 = (A.46)

which can be solved to obtain the increments of nodal displacements.
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A. 4 Simulation of Slow Crack Growth by Finite Element Methods

The simplest method for considering the propagation of a crack in the

finite element method is the gradual releasing of nodes along the crack line

[48] . In such a method the crack propagation must cover the width of one or

more elements during a given time increment. Thus , in practice , the elements

used should be simple ones such as 3-node triangles and 4-node quadrilaterals

in the 2-D problems and the element size must be very small. An alternative

• method [48) is to use elements with a side node the position of which is

shifted forward to simulate the crack propagation . Typical elements to be

used are 8-node quadrilateral elements . In the node shifting technique , the

total crack extension is limited only over the width of one element. Thus,

for a large crack extension it is necessary to combine the node shifting with

the node releasing technique. In this section the procedure used for the

node releasing technique is derived in connection with the assumed stress

hybrid model.

To account for a change in internal or external boundary conditions of

a solid during a given time interval , the functionals given in Eqs . (A.14)

and (A.l6) must be modified. Consider , for example, during the interval
between t and t-i-At a crack surface extends from Z to E+LE. First, consider

- . the state of stress a at t and a virtual displacement corresponding to that

during this time increment. The statement of Principle of Virtual Work then

is,

J ~~~P SU) ci v — 5 ¶‘$9~ d3
V (A.47)

— ç ~~ (~)TJ~~ — ç ~~~c~) ~ S =0

• 
~~~~~ Sb)

Here , for simplicity, body forces are assumed absent. The superscripts (a)

and (b) are referred to the two surfaces created by the crack. Now, based

on the state of stress at t+At the statement of virtual work is

(A.48)
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since under this situation the surfaces AE
(a) and ~~ (b) 

are traction free.
By combining Eqs . (A. 47) and (A. 48) , the statement of the Principle of Virtual
Work for the incremental problem becomes

,ç ~~i S(D4~ )cIV — S5~ZT8~ ds + (A.49)

+ 
c~~

T LI)

dAl~
b :)

In comparison with the statement of virtual work for conventional incremental

problems it is recognized that the last two terms are the additional terms to
account for the crack extension during the time increment. The corresponding

expressions for and ‘ii will be those obtained by adding the

T P
± (I 

~ 
T W AU (a) 

dS + ~ b ~~~ Au~~ dS] respectively, in Eqs. (A.l4)
LE a) — — LE~~~~~~ 

— —
and (A.l6) .

An incremental finite element method for crack propagation has been

developed based on (a) the release of the node which is located at the crack

tip and (b) the advance of the crack for the distance of one element • A
center-cracked panel shown in Figure 1 was analyzed as an elastic-creep

problem neglecting both plasticity and damage parameters. Four-node

rectangular elements were used. A hypothetical incubation period of 100

hours was used for the present calculation . After 100 hours the crack was

assumed to propagate with the rate of 0.008 in/hr. Figure 1 shows the

displacements normal to the crack line before and after the opening of the

two nodes. Since the panel has been allowed to creep for 100 hours before

the opening of the nodes , stresses near the crack tip have been relaxed to

values lower than elastic splutions . These lower stresses are responsible

for the fact that the displacements are smaller than the elastic solutions

near the released nodes .

4 

_ _  
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A.5 Results of Creep Crack Growth Studies

(1) 
• 
The incremental and explicit finite element method has also been
extended to problems for combined plasticity and creep including
the damage parameter. In an attempt to correlate the result of

• finite element analysis to experimental results, a particular
experiment by Haigh [21) on crack growth under creep condition has

been chosen as the example problem. The experiment consists of a
wedge opening load (WOL) specimen under constant tension load.
Haigh provides rather limited experimental data on the relation

• of creep strain vs. time at different stress levels, the rupture
time at different stress Levels, and the crack growth history .
In the finite element analysis, the panel is modeled by 103
triangular elements and 68 rectangular elements, the smallest
around the crack tip having a dimension of 0.375 me. The numerical

- - solution for the stress distribution near the crack tip is shown in
Fig. 2. It indicates some stress relief due to creep and damage in
the region ahead of the crack tip. However, during the time span
covered in the calculation, the stress in the element closest to

the crack tip has not been reduced by any appreciable amount . As
a result in this element the values of the damage parameters w are
almost identical to those obtained by Kachanov ’ s approximate method
[41] which assumes no stress relief due to creep and damage. For

this case the crack incubation time calculated by Kachanov ’s method
is 117 hours which is much smaller than the experimentally observed - •

• value of 750 hours . Thus at this moment, one can only claim that
the result of the present analysis can only estimate the incubation
time to a right order of magnitude. It is felt that when the material
behavior can be modeled more accurately using adequate experimental
data , there will be considerable adjusthent in the finite element
results.

(2) In order to compare the explicit and implicit schemes in creep

analysis, a simple stati cally indeterminate three-bar structure

23
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(Fig. 3) is used as an example . Under a constant tension load ,
the bar AB is ore heavily loaded than the other two bars. Thus ,
this structure actually simulates the problem of tension load of

a panel with a center crack for which the stress near the crack

tip ~~ higher than that away from the crack tip. In both cases

the creep action is to even the stress distribution. For the

analysis of the 3-bar truss, the creep and damage behavior of the

material is based on that of Cr-Mo-V steel used in Haigh ‘s experi-

ment (21]. The time histories of the stresses in these two bars

are given in Fig. 3. When the explicit scheme is used, the time

increments must be reduced progressively . In fact , it is not

possible to extend the calculation to the point where w’l • For

the implicit solution there is no restriction to the choice of time

increments and the solution can be carried to the point where ~~l.

It is seen that the stresses in these bars become relaxed; but

when the damage is nearing completion, the stress in bar AB reduces

further. This is an indication that for the crack growth problem

there will also be appreciable stress relief at the crack tip region .

(3) A method for finite element analysis for elastic-plastic creep

behavior under finite deformation has been formulated. The key in

this study is the representation of the incremental constitutive

relation. For this relation a pair of conjugate kinematical and

dynamical variables , i.e. deformation rate and Xirchhoff stress

tensors , are chosen. 
• 

This is justified because in the case of a

uniaxial tensile test , the deformation rate is equivalent to the

rate of natural strain and the Kirchhoff stress is the engineering

stress multiplied by the elongation ratio. The present formulation

is based on an additive decomposition of deformation rate tensor
into elastic, plastic, and creep components which is equivalent to

the multiplicative decomposition of deformation gradient. In order 
•

to avoid the effects of rotation of the material , i.e. to be frame-

indifferent, the elastic component of deformation rate is assumed
to be linearly proportional to the Jataann rate, instead of the

• 24
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usual material rate of the Kirchhoif stress • For plastic deforma-

tion , a type of inequality similar to that of Drucker ’s is postulated

for the plastic component of deformation rate and the Jaumann rate

of Kirchhoff stress. Although this postulation is not a universal

one, it does guarantee a kind of material stability. By assuming

a Mises loading function defined in Kirchhoff stress space and the

linear relation between plastic component of deformation rate and

Jaumann rate of Kirchhoff stress , the normality condition and the

associated flow rule can be derived. The same flow rule can then

be applied to creep deformation . In the present study , Norton’s

power law is adopted for steady state creep. The finite element

formulation is based on four node hybrid stress elements. The

- 
damage parameter is also included in the formulation.

A.6 Suggested Further Studies

It is apparent that the present study of static creep crack growth is

just a preliminary attempt. For a deeper understanding of this problem a

I 
• 

combined computational and experimental approach is required. The implicit
finite element method should be implemented into a computer code for the

analysis of crack extension under creep conditions based on Kachanov ‘a damage

parameter concept. The numerical solution should be verified by .xp.rimental

results.

Further extensions of the research .ffor t should includ, a study of the
effect of unloading and of possible , crack closur, and an investigation of the
effect of finite strain at th. crack tip in th. finite sl snt solution of

crack growth umdsr creep conditions.

fr 

~~~

.
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